[2023-2019] AIMCEE / « Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains »

Porteur du projet :
Anne Puissant (UMR 7362 LIVE CNRS / A2S UNISTRA)
Co-porteur : Sébastien Gadal

AIMCEE [2019-2023]

ContratContrat de recherche industriel
Co-contractantCNES TOSCA

Contrats de recherche financés

AIMCEE / Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains

Programme de recherche porté par Anne Puissant (UMR 7362 LIVE CNRS / A2S UNISTRA ) et co-porté Sébastien Gadal (Aix-Marseille Université, UMR 7300 ESPACE)

Objectifs du projet


L’objectif de la proposition TOSCA AIMCEE (Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains) est de rassembler les laboratoires de recherches impliqués à la fois dans l’exploitation intelligente des masses de données satellitaires multi-capteurs et dans les problématiques urbaines afin de mutualiser les efforts et la capitalisation des recherche sur ce que nous avons appelé des Actions de Recherche Thématiques permettant de répondre aux défis environnementaux et sociétaux auxquels les socio-systèmes urbains sont soumis à court et long terme, en favorisant les interactions entre les CES du pôle THEIA impliqués sur cette thématique.

La population mondiale atteint 7,63 milliards en janvier 2018. Depuis 2008, pour la première fois dans l’histoire de l’humanité, plus de la moitié de la population vivait en milieu urbain. En 2050, on estime qu’environ 70% de la population mondiale sera urbaine. Cette explosion démographique mondiale s’accompagne d’une urbanisation galopante qui provoque elle-même une expansion géométrique des aires urbaines. Cette urbanisation pèsera lourdement sur les ressources naturelles à grande échelle avec des tensions sur les terres disponibles, la biodiversité. La demande alimentaire devrait doubler, la consommation énergétique augmenter de 80% et l’approvisionnement en eau croître de 55 %… Par ailleurs, « aujourd’hui, près d’un tiers de la population mondiale fait face à des pics de chaleur pendant au moins 20 jours par an. D’ici 2100 cette proportion pourrait grimper à 70 % de la population si rien n’est fait pour limiter le réchauffement climatique ». La multiplication des vagues de chaleur en milieu urbain est également au cœur des préoccupations.

Ainsi, sur le plan international les scientifiques sont formels, le climat change. Hausse des températures et du niveau de la mer ou encore fonte des glaces sont autant de marqueurs incontestables, confirmés par l’observation spatiale à travers les variables essentielles climatiques. Pour certains territoires et en particulier les territoires urbains qui peuvent être considérés comme de véritables socio-systèmes urbains, il est déjà urgent de prendre des décisions cruciales pour l’avenir. Des défis colossaux qui ne seront relevés qu’avec la planification de villes sobres et capables de synergies entre la consommation et la production.

Pour prendre ces décisions, il faut pouvoir se projeter et prédire. Par exemple grâce à des simulations numériques  (étalement urbain, transformations des modes d’occupation et d’usages des sols, submersions littorales, risque de crue…). Cela passe par mesurer et surveiller le changement climatique de ces socio-systèmes urbains. Après l’Accord de Paris, la mobilisation internationale reste forte, sous la houlette des agences spatiales. La coopération internationale et l’apport des satellites ressortent comme deux leviers essentiels pour observer le changement climatique et contrôler les engagements pris pour en atténuer les effets.

En effet, l’imagerie satellitaire est une source de données encore sous-exploitées, seule capable de permettre des analyses de l’échelle mondiale à l’échelle locale avec une même qualité et une régularité de mesures. Complémentaires des relevés de terrains, et des bases de données déjà existantes produites par les agences de cartographie nationale, toutes ces observations et mesures permettent une moisson d’informations que la recherche scientifique analyse, qualifie et intègre dans des modèles. Ces derniers permettent peu à peu de mieux comprendre et de mieux prévoir le fonctionnement et les interactions entre les surfaces continentales, l’hydrosphère et l’atmosphère.

L’accès facilité à l’imagerie satellitaire ainsi que la multiplication des capteurs dans les domaines optique (Pléiades, Spot, Sentinel-2, Landsat…) et radar (Radarsat, terrasar-X, Alos, Sentinel-1, …) est une véritable opportunité pour la communauté scientifique et socio-économique. Il constitue également un défi colossal en terme méthodologiques afin de proposer des méthodes de traitement adaptées à la masse de données disponible, mais également en terme ‘thématique’ afin de délivrer des produits sous la forme d’indicateurs ou de cartographie comme variables d’entrées dans les différents modèles et comme outils d’aide à la décision face aux enjeux sociaux et environnementaux.

L’objectif de cette proposition TOSCA AIMCEE (Apport de l’Imagerie satellitaire Multi-Capteurs pour répondre aux Enjeux Environnementaux et sociétaux des socio-systèmes urbains) est donc de rassembler les laboratoires de recherches impliqués à la fois dans l’exploitation intelligente des masses de données satellitaires multi-capteurs et à la fois dans les problématiques urbaines afin de mutualiser les efforts et la capitalisation des recherche sur ce que nous appellerons des Actions de Recherche Thématiques permettant de répondre aux défis environnementaux et sociétaux auxquels les socio-systèmes urbains seront soumis à court et long terme, en favorisant les interactions entre les CES du pôle THEIA impliqués sur cette thématique.

Plus précisément nous proposons de travailler sur trois grands défis sociétaux et environnementaux :

  1. la consommation foncière et la perte des territoires agricoles ;
  2. la perte de biodiversité, la fragmentation et l’invasion des milieux (en particulier périurbain) ;
  3. le changement climatique, l’augmentation des températures, de la consommation d’énergie et de la pollution urbaine

Productions


  • Publications

Thomas Gloaguen, Kęstutis Zaleckis, Sébastien Gadal. Development of new indexes of the ‘Generic City’ concept in the Baltic coastal city network. ISUF 2022 – The 29th Conference of the International Seminar on Urban Form – Urban Redevelopment and Revitalisation. A Multidisciplinary Perspective, Sep 2022, Łódź – Kraków, Poland. ⟨hal-03783349⟩

Sébastien Gadal, Mounir Oukhattar, Jūratė Kamičaitytė, Moisei Zakharov, Walid Ouerghemmi, et al.. Multiscale and multi-temporal modelling of urban change structures in the Subarctic East Siberian metropolis of Yakutsk. XXIX Conference of the International Seminar on Urban Form: Urban Redevelopment and Revitalisation A Multidisciplinary Perspective, University of Lodz; Cracow University of Technology,; Lodz University of Technology, Sep 2022, Łódź, Poland. ⟨hal-03787176⟩

Thomas Gloaguen, Kęstutis Zaleckis, Sébastien Gadal. Investigation of the use of the ‘Generic City’ concept and its indexes in the analysis in urban and territorial structures in the Baltic cities. IGU Urban Commission Annual Conference, Jul 2022, Paris, France. ⟨hal-03737991⟩

Anne Puissant, Thibault Catry, Rémi Cresson, Nadine Dessay, Laurent Demagistri, et al.. Products and services of the « Urban » THEIA Scientific expertise Centre. ESA Living Planet Symposium 2022, May 2022, Bonn, Germany. 2022. ⟨hal-03678980⟩

Sébastien Gadal. Dynamiques de territorialisations et d’urbanisations post-soviétiques : résiliences territoriales et métropolisations en Lituanie. Géopolitique de l’espace et espace(s) de la géopolitique, LIMEEP-PS; Observatoire de Versailles Saint-Quentin-en-Yvelines (OVSQ), Apr 2022, Saint-Quentin-en-Yvelines, France. ⟨hal-03656805⟩

Sébastien Gadal, Thomas Gloaguen, Jūratė Kamičaitytė. Post-Soviet Coastal Land Cover Change Modelling of the South-Eastern Baltic by Remote Sensing (1984-2020). GIS for Digital Development 2021: Application of GIS and Remote Sensing in Science and Management, North Eastern Federal University, Dec 2021, Yakutsk, Russia. ⟨hal-03502185⟩

Sébastien Gadal. Remote Sensing for Urban Planning. Virtual Global Faculty Week 2021, Kaunas University of Technology, Mar 2021, Kaunas University of Technology, Lithuania. ⟨hal-03183746⟩

Sébastien Gadal, Mounir Oukhattar, Jūratė Kamičaitytė, Moisei Zakharov, W. Ouerghemmi. Spatial modelling of the Arctic metapolis: Yakutsk. GIS for Digital Development 2021: Application of GIS and Remote Sensing in Science and Management, North Eastern Federal University, Dec 2021, Yakutsk, Russia. ⟨hal-03502208⟩

Sébastien Gadal, Thomas Gloaguen. Environmental issues in the coastal regions of the south-eastern Baltic Sea: A sensitive natural environment in the face of increasing anthropic pressures. Baltica : An International Yearbook for Quaternary Geology and Palaeogeography, Coastal Morphology and Shore Processes, Marine Geology and Recent Tectonics of the Baltic Sea Area, Lithuanian Academy of Sciences, 2021, 34 (2), pp.203 – 215. ⟨10.5200/baltica.2021.2.6⟩. ⟨hal-03517994⟩

Nikolai Bobylev, Sébastien Gadal, Valery Konyshev, Maria Lagutina, Alexander Sergunin. Building Urban Climate Change Adaptation Strategies: The Case of Russian Arctic Cities. Weather, Climate, and Society, American Meteorological Society, 2021, 13 (4), pp.875-884. ⟨10.1175/WCAS-D-21-0004.1⟩. ⟨hal-03313126⟩

Sébastien Gadal, Paul Gérard Gbetkom, Alfred Homère Mfondoum. A new soil degradation method analysis by Sentinel 2 images combining spectral indices and statistics analysis: application to the Cameroonians shores of Lake Chad and its hinterland. 7th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2021), Apr 2021, Online Streaming, Czech Republic. pp.25-36. ⟨hal-03207299⟩

Sites internet présentant le projet


GEOINFORMATION – AI – : REMOTE SENSING IMAGE ANALYSIS, GEOMATIC MODELLING, GEOGRAPHIC KNOWLEDGE PROCESSING, AND TERRITORIAL GEO-SIMULATION | Sébastien Gadal | Research Project (researchgate.net)

BALTICS: BALTIC AND NORDIC STUDIES: POST-SOVIET TRANSFORMATIONS, COASTAL CHANGES, TERRITORIAL DEVELOPMENT CONVERGENCES, AND ENVIRONMENTAL ISSUES | Sébastien Gadal | Research Project (researchgate.net)

ARCTIC-S: TERRITORIAL ADAPTATIONS OF THE ARCTIC TO THE GLOBAL WARMING, GLOBALISATION, ENVIRONMENTAL CHANGES, DEVELOPMENT AND URBANISATION. GEOPOLITIC ISSUES | Sébastien Gadal | Research Project (researchgate.net)

A-METROPOLIS: URBANISATION MODELLING, SOCIO-ENVIRONMENTAL CHALLENGES, AND GEOPOLICAL ISSUES OF METROPOLISATIONS | Sébastien Gadal | Research Project (researchgate.net)

Équipe scientifique

Porteur du projet


Anne PUISSANT (UMR7362 LIVE CNRS / A2S UNISTRA)
Co-porteur : Sébastien GADAL

Participants UMR ESPACE


Paul Gérard GBETKOM
Sébastien BRIDIER
Sébastien GADAL
Thomas GLOAGUEN
Jurate KAMICAITYTE
Walid OUERGHEMMI
Mounir OUKHATTAR
Moisei ZAKHAROV

Partenaires extérieurs


LaSTIG (Laboratoire des Sciences et Technologies de l’Information Geographique)

IGN

UMR TETIS

IRSTEA

IRD UMR 228 Espace-Dev

UMR 5126 CESBIO

North-Eastern Federal University (NEFU)

Saint-Petersburg State University (SPsU)

Kaunas University of Technology (KTU)

Vytautas Magnus University (VMU)

[2018-2014] HYEP / « Hyperspectral imagery for Environmental urban Planning »

Porteur du projet :
Christiane Weber, dont
Sébastien Gadal (WP1)

HYEP [2014-2018]

ContratANR
Co-contractantprésentation du projet sur le site de l’ANR

Contrats de recherche financés

Hyperspectral imagery for Environmental urban Planning

Programme de recherche porté par Christiane Weber (CNRS, UMR TETIS), où Sébastien Gadal (Aix-Marseille Université, UMR 7300 ESPACE) est responsable du WP1 : Bases de données morpho-spectrales

Objectifs du projet


La population mondiale se regroupe dans les centres urbains restructurant aux niveaux locaux et régionaux les territoires. Ces espaces sont caractérisés par des processus paradoxaux d’une part un étalement au détriment des écosystèmes naturels ou agricoles et d’autre part une densification du tissu. Ces processus combinés ont impacté les caractéristiques climatiques des échelles locales et régionales (Shafri et al., 2012), ainsi que les processus biotiques et abiotiques des milieux environnants (Voogt and Oki, 2003). Des besoins en information de plus en plus conséquents ont suivi cette évolution, renforcés par l’émergence de logiques de développement durable, à différentes échelles spatiales et de compétence territoriale. Les données satellites actuels fournissent des informations limitées, les caractéristiques du milieu urbain complexifiant leur utilisation, par la forte dynamique interne, l’hétérogénéité spatiale des éléments, des formes géométriques (horizontales et verticales), la variété de matériaux et la présence d’ombre. La cartographie des surfaces, l’état de la végétation, le suivi du vieillissement des matériaux, la caractérisation de la biodiversité végétale (Miller & Small, 2003) recouvrent des champs d’investigation de plus en plus sensibles.

Différents travaux montrent l’apport de l’imagerie hyperspectrale par rapport à l’imagerie multispectrale. Pour Platt et Goetz (2004) les performances de la classification de surfaces urbaines obtenues avec des images acquises par le spectro-imageur Aviris sont supérieures à celles obtenues avec des données Landsat ETM+. Plus récemment. Tan et Wang (2007) évaluent le gain apporté par l’instrument hyperspectral CHRIS/PROBA sur la classification et l’utilisation des milieux urbains par rapport aux données ASTER (3 bandes VISNIR). Plusieurs auteurs (Chen, 2008) illustrent les limitations de capteurs multi-spectraux pour la caractérisation des surfaces imperméables par rapport à l’imagerie hyperspectrale. L’identification des espèces végétales et le relevé sanitaire de la végétation (Mc Kinney, 2002) peut être un atout pour les Trames vertes et bleues.

La richesse et la complexité des matériaux et des formes dans les centres urbains requièrent des spécificités spectrales allant du visible au SWIR (<2.5 µm). Herold et al. (2003), a démontré que les spectromètres offrant une résolution spectrale élevée sur un domaine spectral continu permettaient de mieux identifier (par rapport aux capteurs habituels) et spatialiser des informations sur les sols, la végétation et les matériaux (Chen, 2008 ; Pascucci et al. 2010) et de leur état.

La taille moyenne des objets urbains se situe entre 10 et 20 m (Cutter et al. 2004). Aussi, une résolution de 5 m ou mieux est considérée comme nécessaire pour une représentation des objets urbains (bâtiments, routes), de la végétation (Jansen et al. 2012), ou de la planification du territoire (Wania & Weber, 2007). La contribution des données EnMAP dans un contexte de développement et de planification urbaine a été récemment étudiée par Heldens et al. (2011), mais la résolution spatiale de 30 m fournit des informations inadaptées au niveau du quartier.

Compte tenu des caractéristiques géométriques du milieu, les capacités d’un instrument tel qu’HYPXIM combinant haute résolution spectrale (imageur hyperspectral) et spatiale (imageur panchromatique) devraient permettre d’étudier des objets de taille inférieure à 5 m avec une capacité à couvrir le domaine spectral 0.4 à 2.5 µm. L’imagerie hyperspectrale peut ainsi lever certains des verrous identifiés mais nécessite de mieux cerner les spécificités du milieu et des éléments constitutifs (géométrie, propriétés spectrales). Ce projet a pour objectif de justifier la mission HYPXIM (hyperspectral français) par rapport aux missions existantes et futures, de définir des moyens de traitements pour utiliser ces images et de constituer une base de données morpho-spectrales adaptée à ces différentes missions.

Productions


Publications

Sébastien Gadal, Gintautas Mozgeris, Donatas Jonikavicius, Jūratė Kamičaitytė, Walid Ouerghemmi. A Spectral Database for the Recognition of Urban Objects in Kaunas City: Performance and Morphometric Issues. Sandra Krikstanaviciute. Advanced Construction Architecture: Raw Materials and Circular Economy in the Built Environment, Sep 2020, Kaunas, Lithuania. Kaunas University of Technology, pp.71-72, 2020, ⟨10.5557/e01.2669-1922.2020⟩. ⟨hal-02951336

Sébastien Gadal. Hyperspectral recognition of the urban vegetation using spectral library. Example of Kaunas (Lithuania). GIS Yakutsk 2019: GIS for Digital Development, NEFU, Apr 2019, Yakutsk, Russia. ⟨hal-02098302

Gintautas Mozgeris, Vytautė Juodkienė, Donatas Jonikavičius, Lina Straigytė, Sébastien Gadal, et al.. Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment. Remote Sensing, MDPI, 2018, 10 (10), ⟨10.3390/rs10101668⟩. ⟨hal-01903469

Walid Ouerghemmi, Sébastien Gadal, Gintautas Mozgeris, Donatas Jonikavičius. Urban Vegetation Mapping by Airborne Hyperspectral Imagery: Feasability and Limitations. WHISPER 2018 : 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Sep 2018, Amsterdam, Netherlands. pp.245-249. ⟨hal-01884425

Walid Ouerghemmi, Sébastien Gadal, Gintautas Mozgeris. Urban Vegetation Mapping using Hyperspectral Imagery and Spectral Library. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2018, IEEE, Jul 2018, Valencia, Spain. pp.1632-1635. ⟨hal-01852849⟩

Christiane Weber, Rahim Aguejdad, Xavier Briottet, Josselin Aval, Sophie Fabre, et al.. Hyperspectral Imagery for Environmental Urban Planning. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2018, IEEE, Jul 2018, Valencia, Spain. pp.1628-1631. ⟨hal-01852844

Christiane Weber, Xavier Briottet, Clément Mallet, Sébastien Gadal, Yannick Devile, et al.. HYEP – Hyperspectral Imagery for Environmental Urban Planning. Journées ADEME / ANR – La recherche au service de la transition énergétique, Jun 2018, Issy-les-Moulineaux, France. 2018. ⟨hal-01875894⟩

Sébastien Gadal, Walid Ouerghemmi, Gintautas Mozgeris, Romain Barlatier. Recognition of urban vegetation by hyperspectral airborne high-resolution VNIR imager (Kaunas, Lithuania). 6e édition : colloque groupe hyperspectral SFTP-GH, IRSTEA, May 2018, Montpellier, France. pp.47. ⟨hal-01803803

Sébastien Gadal, Walid Ouerghemmi. Cartographie de la végétation urbaine par imagerie aéroportée hyperspectrale sur la ville de Kaunas (Lituanie). TEMU 2018 : Atelier Télédétection pour l’Etude des Milieux Urbains, Laboratoire Image, Ville, Environnement, UMR 7362 – Laboratoire ICUBE, UMR 7357 – Université de Strasbourg – THEIA – CNES, Mar 2018, Strasbourg, France. ⟨hal-01817060

Gintautas Mozgeris, Sébastien Gadal, Donatas Jonikavičius, Lina Straigyte, Walid Ouerghemmi, et al.. The Potential of Imaging from Ultra-Light Aircraft for Urban Tree Inventories: Case Study in Kaunas, Lithuania. IUFRO – 125th Anniversary Congress 2017, Sep 2017, Freiburg, Germany. IUFRO, pp.430, 2017, Interconnecting Forest, Science, and People. ⟨hal-01595684⟩

Walid Ouerghemmi, Sébastien Gadal, Gintautas Mozgeris, Donatas Jonikavičius, Weber Christiane. Urban objects classification by spectral library: feasibility and applications. JURSE 2017, Prashanth Reddy Marpu; Hussein Abdulmuttalib, Mar 2017, Dubai, United Arab Emirates. p23-27, ⟨10.1109/JURSE.2017.7924629⟩. ⟨hal-01492072

Sébastien Gadal, Walid Ouerghemmi. Urban objects recognition feasibilities by airborne hyperspectral and multispectral remote sensing. Spatial Accuracy 2016, Jul 2016, Montpellier, France. pp.101-108. ⟨hal-01352525

Sébastien Gadal, Walid Ouerghemmi. Morpho-spectral objects classification by hyperspectral airborne imagery. 8th Workshop in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Aug 2016, Los Angeles, United States. pp.349-353. ⟨hal-01359702

Gintautas Mozgeris, Sébastien Gadal, Donatas Jonikavičius, Lina Straigyte, Walid Ouerghemmi, et al.. Hyperspectral and color-infrared imaging from ultra-light aircraft: Potential to recognize tree species in urban environments. 8th Workshop in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Aug 2016, Los Angeles, United States. pp.542-546. ⟨hal-01359643⟩

Christiane Weber, Sébastien Gadal, Xavier Briottet, Clément Mallet. Apport de l’imagerie hyperspectrale pour la planification urbaine. SAGEO 2016 – Spatial Analysis and Geomatics, Dec 2016, Nice, France. pp.454-462. ⟨hal-01687903

Sébastien Gadal, Walid Ouerghemmi. Identification of urban objects using spectral library combined with airborne hyperspectral imaging. 4e colloque du Groupe Hyperspectral de la Société Française de Photogrammétrie et Télédétection (SFPT-GH), Institut polytechnique de Grenoble, May 2016, Grenoble, France. ⟨hal-01819313

Walid Ouerghemmi, Sébastien Gadal, Gintautas Mozgeris, Vytautė Juodkienė, Donatas Jonikavičius, et al.. Generation of urban objects spectral database using laboratory hyperspectral imager in Kaunas city (Lithuania). 4e colloque du Groupe Hyperspectral de la Société Française de Photogrammétrie et Télédétection (SFPT-GH), Institut polytechnique de Grenoble, May 2016, Grenoble, France. ⟨hal-01819945

Sébastien Gadal, Walid Ouerghemmi. Morpho-Spectral Recognition of Dense Urban Objects by Hyperspectral Imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus GmbH (Copernicus Publications), 2015, XL-3/W3, pp.433-438. ⟨hal-01349835

Références de projets

https://www.researchgate.net/project/GEOINFORMATION-AI-Remote-Sensing-Image-Analysis-Geomatic-Modelling-Geographic-Knowledge-Processing-and-Territorial-Geo-Simulation

https://www.researchgate.net/project/A-METROPOLIS-Urbanisation-Modelling-Socio-Environmental-Challenges-and-Geopolical-Issues-of-Metropolisations

https://www.researchgate.net/project/BALTICS-Baltic-and-Nordic-Studies-Post-Soviet-Transformations-Coastal-Changes-Territorial-Development-Convergences-and-Environmental-Issues

 

Site internet présentant le projet


https://hyep.cnrs.fr/

Équipe scientifique

Porteur du projet


Christiane WEBER
Sébastien GADAL (responsable WP1)

Participants UMR ESPACE


Sébastien GADAL
Jurate KAMIVAITYTE
Walid OUERGHEMMI

Partenaires extérieurs


GEODE UMR 5602
GIPSA UMR 5216
IGN
IRAP UMR 5277
TETIS
ONERA